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where (i) the investor maximizes her terminal wealth level, (ii) she can 
invest in securities and private investment opportunities, and (iii) markets 
are incomplete, i.e. the cash flows of private investments cannot 
necessarily be replicated using financial securities. Based on Gustafsson 
and Salo’s (2005) Contingent Portfolio Programming, we develop a multi-
period mixed asset portfolio selection model, where project management 
decisions are captured through project-specific decision trees. This 
model properly captures the opportunity costs imposed by alternative 
investment opportunities and determines the appropriate risk-adjustment 
to the projects based on their effect on the investor’s aggregate portfolio 
risk. The project valuation procedure is based on the concepts of 
breakeven selling and buying prices, which require the solution of mixed 
asset portfolio selection models with and without the project being 
valued. The valuation procedure is demonstrated through numerical 
experiments. 
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1 Introduction 
The valuation of risky multi-period projects is one of the most fundamental topics in corporate 

finance (Brealey and Myers 2000, Luenberger 1998). Among the numerous methods developed 

for this purpose, the risk-adjusted net present value (NPV) method (Brealey and Myers 2000, 

Chapter 2) and the decision tree technique (Raiffa 1968; Brealey and Myers 2000, Chapter 10) 

are among the most popular ones. These two methods are complementary in the sense that a 

decision tree can be used to structure the management decisions and uncertainties related to a 

project, while the risk-adjusted NPV method gives the present value of each risky cash flow 

stream that can be acquired from the decision tree, provided that the appropriate risk-adjusted 

discount rate is known. 

 

For projects of market-traded companies, the appropriate discount rate can, in principle, be 

derived using the Capital Asset Pricing Model (CAPM; Sharpe 1964, Lintner 1965; see 

Rubinstein 1973). However, there are no direct guidelines for determining the discount rate 

when the investor is not a public company, e.g., when the investor is an individual, a 

governmental agency, or a non-listed firm, which do not have a share price to maximize. In a 

series of recent papers, Gustafsson et al. (2004), De Reyck et al. (2004) and Gustafsson and 

Salo (2004) have studied the valuation of risky projects in this setting under the assumptions 

that (i) the investor maximizes her terminal wealth level, (ii) she can invest in securities in 

financial markets as well as in a portfolio of private investment opportunities, and (iii) markets 

are incomplete, i.e. the cash flows of private investments cannot necessarily be replicated using 

financial securities. However, due to the complexity of modeling a portfolio of multi-period 

projects, the developed models have been limited to two time periods only and hence cannot be 

applied to the valuation of a multi-period project whose management strategy can be altered 

over the course of the project’s life cycle. 

 

In this paper, we extend the valuation framework presented in Gustafsson et al. (2004) and 

Gustafsson and Salo (2004) to multiple time periods and intermediate project management 

decisions. Both the original framework and its multi-period extension are based on a mixed 

asset portfolio selection (MAPS) model – a portfolio model including both projects and 

securities – and the concepts of breakeven selling and buying prices, which compare the values 

of optimal portfolios including and not including the analyzed project. We employ Gustafsson 

and Salo’s (2005) Contingent Portfolio Programming (CPP) to develop a multi-period MAPS 

model that captures the management decisions and uncertainties related to risky multi-period 
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projects through project-specific decision trees. We extend CPP to include securities and 

generalize its objective function to several types of preference models, ranging from the 

expected utility model to various non-expected utility models. 

 

The main contribution of this paper is the development of a generic framework for the 

valuation of risky multi-period projects in a setting where the investor maximizes her terminal 

wealth level and where the possible investment assets include both projects and securities. Also, 

we discuss how the results of the earlier MAPS-based project valuation papers extend to the 

multi-period setting. In particular, we show that breakeven prices remain consistent with 

contingent claims analysis when the investor is a non-expected utility maximizer, and that the 

resulting prices are, under certain conditions, the same as in Hillier’s (1963) method. The use of 

the resulting framework is demonstrated through numerical experiments. 

 

The remainder of this paper is structured as follows. Section 2 reviews earlier approaches to the 

valuation of multi-period projects and discusses their assumptions and shortcomings. Section 3 

gives an overview of the model developed in this paper. Section 4 discusses the modeling of 

states, securities, and projects in the present approach, and Section 5 gives an explicit 

formulation of the portfolio selection model. Section 6 describes how the developed portfolio 

model can be used in project valuation, and Section 7 illustrates the approach with numerical 

experiments. Finally, Section 8 draws conclusions. 

2 Earlier Approaches 
The literature on corporate finance contains a large number of apparently rivaling methods for 

the valuation of risky multi-period projects. In what follows, we briefly review some of the most 

widely used approaches, namely, (i) decision trees (Hespos and Strassman 1965, Raiffa 1968), 

(ii) expected utility theory (von Neumann and Morgenstern 1947, Raiffa 1968), (iii) the risk-

adjusted NPV method (Brealey and Myers 2000), (iv) real options (Dixit and Pindyck 1994, 

Trigeorgis 1996), (v) Robichek and Myers’ (1966) certainty equivalent method (see also Brealey 

and Myers 2000, Chapter 9), (vi) Hillier’s (1963) method, and (vii) Smith and Nau’s (1995) 

method. These methods are summarized in Table 1. 
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Table 1. Methods for the valuation of risky multi-period investments. 

 Use  

Method CE PV ST Formula / explanation  

Risk-adjusted NPV  X  
[ ]

1 (1 )

T
t

t
t adj

E c
NPV I

r=

= − +
+∑  

Decision tree   X A flow chart with decision and chance nodes 

Expected utility theory X   [ ] [ ]( )1 ( )CE X u E u X−=  

Contingent claims analysis  X  
0

n

i i
i

NPV I S x ∗

=

= − + ∑  

Robichek and Myers  (1966)  X  
[ ]

1 (1 )

T
t

t
t f

CE c
NPV I

r=

= − +
+∑  

Hillier (1963)  X  
1 (1 )

T
t

t
t f

cNPV I CE
r=

⎡ ⎤
= − + ⎢ ⎥

+⎢ ⎥⎣ ⎦
∑  

Smith and Nau (1995)  X  

NPV = breakeven selling or buying price 

  Preference model for cash flow streams: 

  ( ) ( )1 2 1 2[ , ,..., ] , ,...,T TU c c c E u c c c∗= ⎡ ⎤⎣ ⎦  

Gustafsson et al. (2004) 

Gustafsson and Salo (2004) 
 X  

NPV = breakeven selling or buying price 

  Preference model for terminal wealth levels 

Key: CE = Certainty equivalent for a risky alternative, PV = Present value of a risky cash flow stream, 

ST = Structuring of decision opportunities and uncertainties, I = investment cost, ct = risky cash flow at 

time t, radj = risk-adjusted discount rate, u = utility function, Si = price of security i, ix ∗  = amount of 

security i in the replicating portfolio, rf = risk-free interest rate, u* = intertemporal (multi-attribute) 

utility function. 

 

2.1 Decision Trees and Related Approaches 

In general terms, a decision tree describes the points at which decisions can be made and the 

way in which these points are related to unfolding uncertainties. Conventionally, decision trees 

have been utilized with expected utility theory (von Neumann and Morgenstern 1947) so that 

each end node of the decision tree is associated with the utility implied by the earlier actions 

and the uncertainties that have resolved earlier. This decision tree formulation does not 

explicitly include the time axis or provide guidelines for accounting for the time value of money. 

 

In corporate finance, decision trees are used to describe how project management decisions 

influence the cash flows of the project (see, e.g., Brealey and Myers 2000, Chapter 10). Here, 

decision trees are typically applied together with the risk-adjusted NPV method, whereby an 
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explicitly defined time axis is also constructed. However, the selection of an appropriate 

discount rate for the NPV method is often problematic, mainly because the rate is influenced 

by three confounding factors, (i) the risk of the project, which depends on the project’s 

correlation with other investments, (ii) the opportunity costs imposed by alternative investment 

opportunities, and (iii) the investor’s risk preferences, which affect the two other factors by 

determining (a) the degree of risk-adjustment for the project and (b) the optimal alternative 

investment portfolio when the investor does not invest in the project.  

 

Several methods for selecting the discount rate have been proposed in the literature. However, 

most of them have problematic limitations. For example, the weighted average cost of capital 

(WACC) is appropriate only for average-risk investments in a firm, whereas discount rates 

based on expected utility theory do not account for the opportunity costs imposed by securities 

in financial markets. The real options literature suggests the use of contingent claims analysis 

(CCA) to derive the appropriate discount rate by constructing replicating portfolios using 

market-traded securities. Still, it may be difficult to construct replicating portfolios for private 

projects in practice. Last, the use of a CAPM discount rate is appropriate only for market-

traded companies. 

2.2 Robichek and Myers’ and Hillier’s Methods 

Robichek and Myer’s (1966) and Hillier’s (1963) methods are two alternative ways of 

determining a risk-adjustment to a discount rate in a multi-period setting. These methods have 

been widely discussed in the literature on corporate finance (see, e.g., Keeley and Westerfield 

1972, Bar-Yosef and Mesznik 1977, Beedles 1978, Fuller and Kim 1980, Chen and Moore 1982, 

Gallagher and Zumwalt 1991, Ariel 1998, and Brealey and Myers 2000). They both employ 

expected utility theory or a similar preference model to derive a certainty equivalent (CE) for a 

risky prospect. 

 

In Robichek and Myers’ method, the investor first determines a CE for the cash flow of each 

period, and then discounts it back to its present value at the risk-free interest rate. Yet, 

because CEs are taken separately for each cash flow, the method does not account for the effect 

of cash flows’ temporal correlation on the cash flow stream’s aggregate risk; hence, it may lead 

to an unnecessarily large risk-adjustment. For example, consider a cash flow stream that yields 

a random cash flow X at time 1 and (1 )fX r a− + +  at time 2 (a is a constant and rf is the 

risk-free interest rate). Assuming that the investor invests the funds obtained at time 1 in the 
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risk-free asset, the investor will acquire cash equal to a for sure at time 2. To avoid arbitrage 

opportunities, this cash flow stream has to be discounted at the risk-free interest rate. Still, 

since cash flows at times 1 and 2 are separately risky, Robichek and Myers’ method leads to a 

discount rate that is higher than the risk-free interest rate, which is incorrect. The importance 

of recognizing intertemporal correlation of cash flows is further discussed in Fuller and Kim 

(1980). 

 

On the other hand, in Hillier’s (1963) method, which is in the context of certainty equivalents 

also referred to as the single certainty equivalent (SCE) method (Keeley and Westerfield 1972), 

we first determine the cash flow streams that can be acquired with the project in different 

scenarios and then calculate the NPVs of these streams using the risk-free interest rate. The 

result is a probability distribution for risk-free-discounted NPV, for which a CE is then 

determined. However, the use of the risk-free interest rate essentially means that any money 

received before the end of the planning horizon is invested in the risk-free asset. Yet, it might 

be more advantageous to invest the funds in risky securities instead. Therefore, Hillier’s method 

is, strictly speaking, applicable only in settings, where the investor cannot invest in risky 

securities. 

 

Perhaps the most restrictive assumption used in Hillier’s method as well as in Robichek and 

Myers’ method is that the risk-adjustment to the discount rate is determined only using the 

investor’s risk preferences without considering alternative investment opportunities. Yet, in 

general, the appropriate discount rate depends also on the investment portfolio in which the 

investor would invest if she did not invest in the project. For example, consider a risk-neutral 

investor who can invest in one project and in risky securities in financial markets. We know 

that, in financial markets, such an investor would invest all her funds in the security with the 

highest expected return. Therefore, the appropriate discount rate for the NPV of the investor’s 

project is equal to the expected rate of return of this security. Yet, both of the methods 

discussed in this section would give a discount rate equal to the risk-free interest rate for the 

project. The fact that Robichek and Myers’ and Hillier’s methods do not adequately consider 

alternative investment opportunities limits their applicability to a setting where the investor 

can invest only in the analyzed project and in the risk-free asset. 
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2.3 Smith and Nau’s Method 

The idea behind Smith and Nau’s (1995) method, which Smith and Nau call “full decision tree 

analysis,” is to explicitly account for security trading in each decision node of a decision tree. 

The main advantage of the approach is that it appropriately accounts for the effect that the 

possibility to invest in securities has on the discount rate of a risky project. However, the 

method does not consider alternative projects, which impose an opportunity cost on the project 

being valued. Also, the method relies on the assumption that the investor maximizes the 

(intertemporal) utility of the project’s cash flows rather than the utility of the investor’s 

terminal wealth level. Therefore, it does not necessarily lead to an investment portfolio with 

maximal NPV, when NPV is defined as the present equivalent of the investment’s future value 

(Luenberger 1998). 

 

Also, practically appealing forms of the method rely on several restrictive assumptions: in order 

to develop a useful rollback procedure, Smith and Nau (1995) assume (i) additive independence 

(Keeney and Raiffa 1976), (ii) constant absolute risk aversion (CARA), and (iii) partial 

completeness of markets. Yet, as pointed out by Keeney and Raiffa (1976), additive 

independence entails possibly unrealistic preferential restrictions. The CARA assumption seems 

also questionable, because it leads to an exponential utility function with utility bounded from 

above. This is known to result in an unrealistic degree of risk aversion at high levels of 

outcomes (see, e.g., Rabin 2000). In practice, it may also be difficult to create a replicating 

portfolio for market-related cash flows of a project, as assumed in partially complete markets. 

 

In view of the limitations of earlier approaches, we develop a valuation method for risky multi-

period projects where project management decisions are structured as project-specific decision 

trees. The method relies on fewer assumptions about the investor’s preference structure than 

Smith and Nau’s integrated procedure, allowing the use of a wide range of preference models. 

We also employ the objective of maximization of the investor’s terminal wealth level, which 

ensures consistency with NPV maximization. 

3 Model Overview 
In a MAPS model, there are two kinds of assets, projects and securities. Projects produce cash 

flows according to the chosen project management strategy; cash flows from securities are 

realized through trading decisions. Similarly to CPP, uncertainties are modeled using a state 

tree, which depicts the structure of future states of nature (Figure 1). The state tree need not 
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be binomial or symmetric; it may also take the form of a multinomial tree that has different 

probability distributions in its branches. In each non-terminal state, securities can be bought 

and sold in any, possibly fractional quantities. As usual in the financial literature, we assume 

that there are no transaction costs or profits tax.  

 

Using the CPP framework, projects are modeled using decision trees that span over the state 

tree. Figure 2 describes how project decisions (the figure on the left), when combined with the 

state tree in Figure 1, lead to project-specific decision trees (the figure on the right). The 

specific feature of these decision trees is that the chance nodes – since they are generated using 

the common state tree – are shared by all projects. Security trading is implemented through 

state-specific trading variables, which are similar to the ones used in financial models of 

stochastic programming (e.g., Mulvey et al. 2000) and in Smith and Nau’s (1995) method. 
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Figure 1. A state tree. 
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Figure 2. A decision tree for a project. 

 

The investor seeks to maximize the utility of her terminal wealth level. When the investor’s 

preferences are captured by the preference functional U, this objective can be expressed as 

max [ ]U X , 

where the random variable X represents the amount of cash at the end of the planning horizon. 

When the investor is able to determine a certainty equivalent for any X, U can be expressed as 

a strictly increasing transformation of the investor’s certainty equivalent operator CE. Hence, 

the objective can be written as 

max [ ]CE X , 

which is the general objective function used in CPP. 

 

Alternatively, it is possible to use a risk-constrained mean-risk model (Gustafsson et al. 2004), 

where the investor maximizes the mean of X and constrains the risk level for X. Let ρ be the 

investor’s risk measure and R her risk tolerance, i.e. the maximum level for risk. Then, the 

objective function is  

max [ ]E X  

and the risk constraint is 

[ ]X Rρ ≤ . 

A risk-constrained model is often relevant, because without a risk constraint several preference 

models may yield unbounded solutions when there is a possibility to purchase securities and 

borrow without limit (see Gustafsson and Salo 2004). 
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4 Formulation of States, Assets, and Cash Flows 

4.1 States 
Let the planning horizon be { }0,...,T . The set of states in period t  is denoted by tΩ , and the 

set of all states is 
0

T

t
t=

Ω = Ω∪ . The state tree starts with base state 0ω  in period 0. Each non-

terminal state is followed by at least one state. This relationship is modeled by the function 

:B Ω → Ω  which returns the immediate predecessor of each state, except for the base state, 

for which the function gives 0 0( )B ω ω= . 

 

The probability of state ω , when ( )B ω  has occurred, is given by ( )( )Bp ω ω . Unconditional 

probabilities for each state, except for the base state, can be computed recursively from the 

equation ( )( ) ( ) ( ( ))Bp p p Bωω ω ω= ⋅ . The probability of the base state is 0( ) 1p ω = . 

4.2 Assets 

Let there be n securities available in financial markets. The amount of security i bought in 

state ω  is indicated by trading variable ,ix ω , 1,...,i n= , ω ∈Ω , and the price of security i in 

state ω  is denoted by ( )iS ω . Under the assumption that all securities are sold back in the next 

period (they can immediately be re-bought), the cash flows implied by security i in state 

0ω ω≠  is ( ), ( ) ,( )i i B iS x xω ωω ⋅ − . In base state 0ω , the cash flow is 
00 ,( )i iS x ωω− ⋅ . 

 

The investor can invest privately in m projects. The decision opportunities for each project are 

structured as a decision tree which is formed of decision points. For each project 1,...,k m= , 

the decision tree is implemented using a set of decision points kD  and the function ( )ap d  that 

gives the action leading to decision point { }0\k kd D d∈ , where 0
kd  is the first decision point of 

project k. Let dA  be the set of actions that can be taken in decision point kd D∈ . For each 

action a  in dA , a binary action variable ,k az  indicates whether the action is selected or not. 

These variables are bound by the restriction that, at each decision point, only one of them can 

be equal to one at a time. The action in decision point d is chosen in state ( )dω . 

 

For a project k, the vector of all action variables ,k az  relating to the project, denoted by kz , is 

called the management strategy of project k. The vector of all action variables of all projects, 

denoted by z, is termed the project portfolio management strategy. The pair ( , )x z , composed 

of all trading and action variables, is the (mixed asset) portfolio management strategy. 
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4.3 Cash Flows and Cash Surpluses 

Let ( , )p
kCF ωkz  be the cash flow of project k in state ω  when the project management strategy 

is kz . When , ( )k aC ω  is the cash flow in state ω  implied by action a , this cash flow is given by  

, ,
:

( ) ( )

( , ) ( )
k d
B

p
k k a k a

d D a A
d

CF C z

ω ω

ω ω
∈ ∈
∈Ω

= ⋅∑ ∑kz , 

where the restriction in the summation of decision points guarantees that actions yield cash 

flows only in the prevailing state and in the future states that can be reached from the 

prevailing state. The set ( )B ωΩ  is defined as 

{ }( ) | 0 such that ( )B kk Bω ω ω ω′ ′Ω = ∈Ω ∃ ≥ = , where 1( ) ( ( ))n nB B Bω ω−=  is the n:th 

predecessor of ω  ( 0( )B ω ω= ). 

 

The cash flows from security i in state ω ∈Ω  are given by  

( )
,

, ( ) ,

( )
( , )

( )

i i
s

i
i i B i

S x
CF

S x x

ω

ω ω

ω
ω

ω

− ⋅⎧⎪= ⎨
⋅ −⎪⎩

ix  
0

0

if 

if 

ω ω

ω ω

=

≠
 

Thus, the aggregate cash flow ( , , )CF ωx z  in state ω ∈Ω , obtained by summing up the cash 

flows for all projects and securities, is 

( )

1 1

, , , 0
1 :

( ) ( )

, ( ) , , , 0
1 :

( ) ( )

( , , ) ( , ) ( , )

( ) ( ) ,              if 

( ) ( ) ,    if 

k d
B

k d
B

n m
s p

i k
i k

n

i i z a k a
i d D a A

d

n

i i B i z a k a
i d D a A

d

CF CF CF

S x C z

S x x C z

ω

ω ω

ω ω

ω ω

ω ω ω

ω ω ω ω

ω ω ω ω

= =

= ∈ ∈
∈Ω

= ∈ ∈
∈Ω

= +

⎧ − ⋅ + ⋅ =⎪
⎪⎪= ⎨
⎪ ⋅ − + ⋅ ≠
⎪
⎪⎩

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

i kx z x z

 

Together with the initial budget of each state, cash flows define cash surpluses that would 

remain in state ω ∈Ω  if the investor chose portfolio management strategy ( , )x z . Assuming 

that excess cash is invested in the risk-free asset, the cash surplus in state ω ∈Ω  is given by 

( ) ( )

( ) ( , , )

( ) ( , , ) (1 )B B

b CF
CS

b CF r CS

x z

x zω
ω ω ω

ω ω

ω ω →

+⎧⎪= ⎨ + + + ⋅⎪⎩
  

0

0

if 

if 

ω ω

ω ω

=

≠
, (1) 

where ( )b ω  is the initial budget in state ω ∈Ω  and ( )Br ω ω→  is the short rate at which cash 

accrues interest from state ( )B ω  to ω . Cash surplus in a terminal state is the investor’s 

terminal wealth level in that state. 
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5 Optimization Model 
When using the preference functional U, the objective function for the MAPS model is written 

as a function of cash surplus variables of the last time period, i.e. 

( )
, ,

maxU Tx z CS
CS

 
where CST denotes the vector of cash surplus variables related to period T. Under the risk-

constrained mean-risk model, the objective is to maximize the expectation of the investor’s 

terminal wealth level, viz. 

, ,
max ( )

T

p CS
x z CS ω

ω

ω
∈Ω

⋅∑ . 

Three types of constraints are imposed on the model: (i) budget constraints, (ii) decision 

consistency constraints, and (iii) risk constraints, which apply to risk-constrained models only. 

Different versions of the MAPS model are summarized in Table 2. 

5.1 Budget Constraints 

Budget constraints ensure that there is a nonnegative amount of cash in each state. They can 

be implemented using continuous cash surplus variables CSω , which measure the amount of 

cash in state ω . Using (1), these variables lead to the following budget constraints: 

00 0( , , ) ( )CF CS bωω ω− = −x z  

( ) ( ) 0( , , ) (1 ) ( ) \{ }B BCF r CS CS bω ω ω ωω ω ω ω→+ + ⋅ − = − ∀ ∈Ωx z . 

Note that if CSω  is negative, the investor borrows money at the risk-free interest rate to cover 

a funding shortage. Thus, CSω  can also be regarded as a trading variable for the risk-free asset. 

5.2 Decision Consistency Constraints 

Decision consistency constraints implement the projects’ decision trees. They require that (i) at 

each decision point at which the investor arrives, only one action is selected, and that (ii) at 

each decision point at which the investor does not arrive, no action is taken, implying that the 

point does not incur any cash flows. Decision consistency constraints can be written as 

0

, 1 1,...,
dk

k a
a A

z k m
∈

= =∑  (2)  

{ }0, , ( ) \ 1,...,
d

k a k ap d k k
a A

z z d D d k m
∈

= ∀ ∈ =∑ , (3) 

where (2) ensures that one action is selected in the first decision point, and (3) implements the 

above requirements for other decision points. 
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Table 2. Multi-period MAPS models. 

 Preference 

functional model 

General mean-risk 

model 

Deviation-based mean-risk model 

Objective 

function 
( )

, ,
maxU Tx z CS

CS
 , ,

max ( )
T

p CSω
ω

ω
∈Ω

⋅∑x y CS
 

Budget 

constraints 
00 0( , , ) ( )CF CS bωω ω− = −x y  

( ) ( ) 0( , , ) (1 ) ( ) \{ }B BCF r CS CS bω ω ω ωω ω ω ω→+ + ⋅ − = − ∀ ∈Ωx y  

Decision 

consistency 

constraints 

 
0

, 1 1,...,
dk

k a
a A

z k m
∈

= =∑  

 { }0, , ( ) \ 1,...,
d

k a k ap d k k
a A

z z d D d k m
∈

= ∀ ∈ =∑  

Risk 

constraints 
- ( ) Rρ ≤TCS  

( ), Rρ − +∆ ∆ ≤
( ) 0 TCSω ω ωτ ω+ −− − ∆ + ∆ = ∀ ∈ΩTCS  

Variables 

{ }, 0,1 1,...,k a d kz a A d D k m∈ ∀ ∈ ∀ ∈ =  

,  free 1,...,ix i nω ω∀ ∈Ω =  

 freeCSω ω∀ ∈Ω  

{ }, 0,1 1,...,k a d kz a A d D k m∈ ∀ ∈ ∀ ∈ =  

,  free 1,...,ix i nω ω∀ ∈Ω =  

 freeCSω ω∀ ∈Ω  

0 Tω ω−∆ ≥ ∀ ∈Ω  

0 Tω ω+∆ ≥ ∀ ∈Ω  

5.3 Risk Constraints 

A risk-constrained model includes one or more risk constraints. For the sake of analogy with 

Gustafsson et al. (2004), we focus here on the single constraint case. When ρ denotes the risk 

constraint and R the risk tolerance, the risk constraint can be expressed as 

( ) Rρ ≤TCS . 

Many common dispersion statistics such as variance (V; Markowitz 1952, 1987), semivariance 

(SV; Markowitz 1959), absolute deviation (AD; Konno and Yamazaki 1991), lower semi-

absolute deviation (LSAD; Gotoh and Konno 2000), and expected downside risk (EDR; Eppen 

et al. 1989) can be formulated through deviation constraints introduced in Gustafsson and Salo 

(2005) (see also Gustafsson et al. 2004). In general, deviation constraints are expressed as 

( ) 0 TCSω ω ωτ ω+ −− − ∆ + ∆ = ∀ ∈ΩTCS , 

where ( )τ TCS  is a function defining the target value from which the deviations are calculated, 

and ω
+∆  and ω

−∆  are nonnegative deviation variables which measure how much the cash surplus 

in state Tω ∈Ω  differs from the target value. For example, when the target value is the mean 

of the terminal wealth level, the deviation constraints are written as 
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( ) 0 ,
T

TCS p CSω ω ω ω
ω

ω ω+ −
′

′∈Ω

′− − ∆ + ∆ = ∀ ∈Ω∑   

Using these deviation variables, some common dispersion statistics can be written as 

AD: ( ) ( )
T

p ω ω
ω

ω − +

∈Ω

⋅ ∆ + ∆∑ .   

LSAD: ( )
T

p ω
ω

ω −

∈Ω

⋅ ∆∑ .  

V: 
2( ) ( )

T

p ω ω
ω

ω − +

∈Ω

⋅ ∆ + ∆∑   

SV: 2( ) ( )
T

p ω
ω

ω −

∈Ω

⋅ ∆∑ .  

The respective fixed-target value statistics can be obtained with the deviation constraints  

0 TCSω ω ωτ ω+ −− − ∆ + ∆ = ∀ ∈Ω , 

where τ is the fixed target level. EDR, for example, can then be obtained from the sum 

( )
T

p ω
ω

ω −

∈Ω

⋅ ∆∑ .  

6 Project Valuation 
The value of a project can be defined as the lowest price at which a rational investor would be 

willing to sell a project, if she had the project, and as the highest price at which a rational 

investor would be willing to buy the project, if she did not have it. These prices are referred to 

as the breakeven selling price and breakeven buying price of the project, respectively 

(Gustafsson et al. 2004, Luenberger 1998, Smith and Nau 1995). In this section, we extend the 

definitions of these prices, as presented in Gustafsson et al. (2004), to a multi-period MAPS 

setting. 

 

The breakeven prices for a project can be determined from optimization problems where the 

investor invests and does not invest in the project (see Table 3). Let the project being valued 

be indexed with j. The action associated with not starting the project is denoted by a*. When 

calculating the breakeven selling price, we first determine the optimal investment portfolio with 

the project. Then, we iteratively solve another optimization problem where the investor does 

not invest in the project but where an amount s
jv  is added to the budget at time 0 instead. The 

breakeven selling price is the amount s
jv  that makes the portfolios with and without the project 

equally preferable. In a preference functional model, this means that the utilities of the two 

portfolios are identical. In a mean-risk model, two portfolios are equally preferred if they are 

equal in terms of the expected terminal wealth level and they both satisfy the risk constraint.  

 

The breakeven buying price for a project is determined similarly as its breakeven selling price. 
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The difference is that, in the first setting, the investor does not invest in the project, and in the 

second setting, she invests in the project and deducts an amount b
jv  from the budget at time 0. 

The breakeven selling price is the amount that makes the investor indifferent between the 

portfolios with and without the project. In general, the breakeven buying price and the 

breakeven selling price for a project are not equal to each other. 

 

Table 3 describes how breakeven selling and buying prices can be determined based on the 

optimization problems in Table 2. In each setting, an additional constraint is added to the 

optimization model. Also, the budget at time 0 is modified in the second setting. The objective 

function values of the resulting models at optimum are denoted by W +  and W −  depending on 

whether the investor invests in the project or not. 

Table 3. Definitions of the value of project j. Each setting is based on the model in Table 2. 

 Breakeven selling price Breakeven buying price 

Definition s
jv  such that s sW W+ −=  b

jv  such that b bW W+ −=  

Status quo Additional constraint: 

, * 0j az = , i.e. invest in project 

Budget at time 0:  

0( )b ω  

Optimal objective function value: 

sW +  

 

Additional constraint: 

  , * 1j az = , i.e. do not invest in project 

Budget at time 0:  

0( )b ω  

Optimal objective function value: 

  bW −  

 

Second 

setting 

Additional constraint: 

  , * 1j az = , i.e. do not invest in project 

Budget at time 0:  

0( ) s
jb vω +  

Optimal objective function value: 

  sW −  

 

Additional constraint: 

  , * 0j az = , i.e. invest in project 

Budget at time 0:  

0( ) b
jb vω −  

Optimal objective function value: 

  bW +  

 

 

Breakeven selling and buying prices exhibit a notable property: they yield the same result as 

CCA whenever the method is applicable, i.e. whenever the cash flows of the project can be 

replicated by trading financial securities. In general, the CCA value of the project is defined as 

the value of the portfolio that is required to create a trading strategy replicating the future cash 

flows of the project minus the project’s investment cost at time 0 (see Table 1). Smith and Nau 
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(1995) show that this property holds for investors with an intertemporal utility function over 

cash flow streams, whereas Gustafsson and Salo (2004) prove the same for non-expected utility 

investors who maximize their terminal wealth level in a two-period setting. The following 

proposition generalizes the latter result to a multi-period setting. 

 

PROPOSITION 1. If there is a replicating trading strategy for a project, the breakeven buying 

price and breakeven selling price for the project are equal and yield the same value as CCA. 

PROOF: See Appendix. 

 

Gustafsson and Salo (2004) and Gustafsson et al. (2004) also discuss valuation formulas that 

facilitate the computation of project values for (i) certain types of mean-risk investors, (ii) 

Choquet-expected utility maximizers exhibiting constant absolute risk aversion, and (iii) 

investors using Wald’s (1950) maximin criterion. These formulas are applicable in the two-

period case and are of the form 

1 f

V Vv
r

+ −−
=

+
, 

where V +  and V −  are the optimal objective function values with and without the project, 

respectively, and rf is the risk-free interest rate. Since the propositions rely on the examination 

of the last time period with no consideration for the number of intermediate periods, these 

formulas can also be used in a multi-period setting with the modification that the objective 

function values are discounted using the time-T spot-rate, sT, viz. 

(1 )TT

V Vv
s

+ −−
=

+
. 

The formal proof of the formulas in a multi-period setting is almost identical to their proof in 

the two-period setting and is hence omitted. 

 

As shown by Proposition 2, there exists also an analogous formula for the breakeven selling 

price when the investor can invest only in a single project and the risk-free asset. This 

proposition holds for any rational preference model accommodated by the portfolio models in 

Table 2. If we further assume that the investor exhibits constant absolute risk aversion, i.e. the 

investor’s certainty equivalent operator satisfies [ ] [ ]CE X b CE X b+ = +  for all random 

variables X and constants b, breakeven selling and buying prices are equal to each other; they 

are also independent of the budget, and they can be computed from the certainty equivalent of 

the project’s future value (Proposition 3). The proofs of these two propositions are in Appendix. 
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PROPOSITION 2. When the investor can invest in a single project and in the risk-free asset, the 

breakeven selling price for the project can be computed using the formula 
(1 )TT

V Vv
s

+ −−
=

+
, where 

V +  and V −  are the investor’s certainty equivalents for her terminal wealth level with and 

without the project, respectively, and sT is the time-T spot rate. 

 

PROPOSITION 3. When the conditions of Proposition 2 hold and the investor’s certainty 

equivalent operator satisfies [ ] [ ]CE X b CE X b+ = +  for all random variables X and constants 

b, breakeven buying and selling prices are equal and can be computed using the formula 

(1 ) (1 )
T

T T
T T

V V CEv
s s

+ −−
= =

+ +
, where CET is the certainty equivalent for the project’s future value 

and sT is the time-T spot rate. 

 

If all short rates are equal to rf, the formula in Proposition 3 can be expressed as  

1

(1 )

(1 )

T
T t

t f
t

T
f

CE c r
v I

r

−

=

⎡ ⎤+⎢ ⎥⎣ ⎦= − +
+

∑
, 

where, following the notation in Table 1, I is the investment cost at time 0 and ct is the random 

time-t cash flow implied by the project under the optimal project management strategy. Notice 

that if the investor’s certainty equivalent operator further satisfies [ ] [ ]CE aX aCE X=  for all 

random variables X and constants a (that is, the investor exhibits also constant relative risk 

aversion), the formula reduces to Hillier’s method (Table 1). This observation is formalized 

with the following proposition. The proof is obvious from the above and is hence omitted. 

 

PROPOSITION 4. When the conditions of Proposition 2 hold and the investor’s certainty 

equivalent operator satisfies [ ] [ ]CE aX b aCE X b+ = +  for all random variables X and 

constants a and b, the breakeven buying price and breakeven selling price are equal and yield the 

same value as Hillier’s method, given by the formula 
1 (1 )

T
t

t
t t

cNPV I CE
s=

⎡ ⎤
= − + ⎢ ⎥+⎣ ⎦

∑ , where I is 

the investment cost of the project, ct is the cash flow at time t, and st is the time-t spot rate. 

 

For example, Proposition 4 can be applied with risk-neutral investors, some mean-risk models 

(see, e.g., Gustafsson and Salo 2005), and preference models based on Yaari’s (1987) dual 

theory. However, no risk-averse expected utility maximizer exhibits both constant absolute and 
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constant relative risk aversion, so that no risk-averse expected utility maximizer is, in general, 

consistent with Hillier’s method. 

 

While Hillier’s method can be obtained as a special case of breakeven selling and buying prices, 

Robichek and Myers’ (1966) method does not comply with these prices, unless restrictive 

assumptions about the analyzed cash flow streams are made. For example, when a project’s 

cash flows are perfectly correlated with each other and the conditions of Proposition 4 hold, 

Robichek and Myer’s method reduces to Hillier’s method, and hence gives consistent results 

with the breakeven prices. On the other hand, Smith and Nau’s (1995) method coincides with 

the present approach when the chosen intertemporal utility function rewards for the 

maximization of the expected utility of the terminal wealth level, i.e., when the utility functions 

for periods other than the last are identically zero. Indeed, maximization of intertemporal 

utility and that of the utility of terminal wealth level are not equivalent objectives: in effect, it 

can be shown that an intertemporal utility function can lead to an investment portfolio, which 

is stochastically dominated by another investment portfolio in terms of terminal wealth levels 

(Proposition 5). Since the terminal wealth level is widely regarded as the future value 

equivalent of NPV, care should be taken when applying Smith and Nau’s method in a setting 

where the investor aims to maximize the NPV of the investment portfolio. Table 4 summarizes 

the conditions under which other project valuation methods give the same results as the present 

approach.  

 

PROPOSITION 5. Maximization of intertemporal utility may lead to a portfolio that is 

stochastically dominated by another portfolio in terms of the terminal wealth level. 

PROOF: See Appendix. 

 

Table 4. The conditions when the present approach coincides with other project valuation methods. 

Method Preferences Cash flows Available investments 

Hillier (1963) [ ] [ ]CE aX b aCE X b+ = +  – One project, risk-free asset 

Robichek and Myers (1966) [ ] [ ]CE aX b aCE X b+ = +  Perfectly correlated One project, risk-free asset 

Smith and Nau (1995) Utility function for each period 

except the last is identically 0 

– One project, risk-free asset, 

securities 

 

Finally, it is worth noting that the results based on the CAPM in Gustafsson and Salo (2004) 

and Gustafsson et al. (2004), such as the convergence of project values to the CAPM market 
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prices, may not hold in a multi-period setting. The reason for this is that the mean-variance 

model, on which the CAPM is based, is a dynamically inconsistent preference model (Machina 

1989). Therefore, the optimal portfolio for a mean-variance investor maximizing her terminal 

wealth level is, in general, different from the portfolio obtained using the two-period CAPM 

consecutively in a multi-period setting. 

7 Numerical Experiments 
In the previous sections, we developed a framework for valuing risky multi-period projects in 

incomplete markets, and showed that the framework gives consistent results with CCA and, 

under certain conditions, with Hillier’s (1963) method. In this section, we demonstrate the 

approach through a set of numerical experiments and show that most of the phenomena 

observed in a two-period MAPS setting also occur in the multi-period setting. In particular, we 

cast light on the following issues: 

Q1. How are the values of multi-period projects influenced by the possibility to invest 

in risky securities? 

Q2. How are the values of multi-period projects influenced by the possibility to invest 

in other projects? 

Q3. How do the values of multi-period projects depend on the investor’s risk attitude? 

7.1 Experimental Setup 

The experimental setup involves 3 time periods, 4 projects, and 2 securities that together 

constitute the market. Uncertainties related to projects and securities are captured through a 

state tree which consists of 8 equally likely time-1 states and 64 equally likely time-2 states 

(Figure 3). Each state is formed of two underlying states, (i) the market state (denoted by M), 

which determines the prevailing security prices, and (ii) the private state (denoted by P) that 

influences project outcomes. Security prices at time 2 are given in Figure 3. Security prices at 

time 1 are computed from these prices using the CAPM (Table 5), and the prices at time 0 are 

obtained similarly from the time-1 security prices (Table 6). 
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Security 1 Security 2 Project A Project B Project C Project D

State 0 State M1/P1 State M11/P11 $60 $36 $150 $150 $100 $180
State M12/P11 $50 $12 $150 $100 $120 $60
State M13/P11 $40 $36 $150 $50 $90 $180
State M14/P11 $30 $12 $150 $0 $80 $60
State M11/P12 $60 $36 $50 $250 $170 $180
State M12/P12 $50 $12 $50 $200 $200 $60
State M13/P12 $40 $36 $50 $150 $40 $180
State M14/P12 $30 $12 $50 $100 $50 $60

State M2/P1 State M21/P11 $70 $36 $150 $200 $130 $180
State M22/P11 $60 $12 $150 $150 $70 $60
State M23/P11 $50 $36 $150 $100 $130 $180
State M24/P11 $40 $12 $150 $50 $110 $60
State M21/P12 $70 $36 $50 $300 $100 $180
State M22/P12 $60 $12 $50 $250 $180 $60
State M23/P12 $50 $36 $50 $200 $40 $180
State M24/P12 $40 $12 $50 $150 $50 $60

State M3/P1 State M31/P11 $80 $36 $150 $250 $190 $180
State M32/P11 $70 $12 $150 $200 $45 $60
State M33/P11 $60 $36 $150 $150 $60 $180
State M34/P11 $50 $12 $150 $100 $100 $60
State M31/P12 $80 $36 $50 $350 $110 $180
State M32/P12 $70 $12 $50 $300 $50 $60
State M33/P12 $60 $36 $50 $250 $140 $180
State M34/P12 $50 $12 $50 $200 $90 $60

State M4/P1 State M41/P11 $90 $36 $150 $300 $65 $180
State M42/P11 $80 $12 $150 $250 $105 $60
State M43/P11 $70 $36 $150 $200 $100 $180
State M44/P11 $60 $12 $150 $150 $115 $60
State M41/P12 $90 $36 $50 $400 $175 $180
State M42/P12 $80 $12 $50 $350 $90 $60
State M43/P12 $70 $36 $50 $300 $210 $180
State M44/P12 $60 $12 $50 $250 $180 $60

State M1/P2 State M11/P21 $60 $36 $80 $220 $50 $180
State M12/P21 $50 $12 $80 $170 $40 $60
State M13/P21 $40 $36 $80 $120 $110 $180
State M14/P21 $30 $12 $80 $70 $105 $60
State M11/P22 $60 $36 $40 $260 $125 $180
State M12/P22 $50 $12 $40 $210 $115 $60
State M13/P22 $40 $36 $40 $160 $235 $180
State M14/P22 $30 $12 $40 $110 $170 $60

State M2/P2 State M21/P21 $70 $36 $80 $270 $250 $180
State M22/P21 $60 $12 $80 $220 $215 $60
State M23/P21 $50 $36 $80 $170 $180 $180
State M24/P21 $40 $12 $80 $120 $190 $60
State M21/P22 $70 $36 $40 $310 $130 $180
State M22/P22 $60 $12 $40 $260 $100 $60
State M23/P22 $50 $36 $40 $210 $70 $180
State M24/P22 $40 $12 $40 $160 $90 $60

State M3/P2 State M31/P21 $80 $36 $80 $320 $240 $180
State M32/P21 $70 $12 $80 $270 $150 $60
State M33/P21 $60 $36 $80 $220 $120 $180
State M34/P21 $50 $12 $80 $170 $100 $60
State M31/P22 $80 $36 $40 $360 $230 $180
State M32/P22 $70 $12 $40 $310 $100 $60
State M33/P22 $60 $36 $40 $260 $120 $180
State M34/P22 $50 $12 $40 $210 $240 $60

State M4/P2 State M41/P21 $90 $36 $80 $370 $100 $180
State M42/P21 $80 $12 $80 $320 $160 $60
State M43/P21 $70 $36 $80 $270 $250 $180
State M44/P21 $60 $12 $80 $220 $290 $60
State M41/P22 $90 $36 $40 $410 $200 $180
State M42/P22 $80 $12 $40 $360 $100 $60
State M43/P22 $70 $36 $40 $310 $50 $180
State M44/P22 $60 $12 $40 $260 $45 $60  

Figure 3. State tree with security prices and project cash flows at time 2. 
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Table 5. Securities in states M1–M4. 

 M1 M2 M3 M4 

 1 2 1 2 1 2 1 2 

Beta 0.821 1.527 0.782 1.795 0.755 2.064 0.735 2.332 

Market price $39.32 $20.00 $48.58 $20.00 $57.83 $20.00 $67.09 $20.00 

Capitalization weight 74.68% 25.32% 78.46% 21.54% 81.26% 18.74% 83.42% 16.58% 

Expected rate of return 14.46% 20.00% 13.23% 20.00% 12.39% 20.00% 11.78% 20.00% 

St. dev. of rate of return 28.44% 60.00% 23.02% 60.00% 19.33% 60.00% 16.66% 60.00% 

Market expected return 15.86% 14.68% 13.82% 13.15% 

Market st. dev. 31.15% 26.49% 23.05% 20.39% 

 

Table 6. Securities in state 0. 

 Security 

 1 2 

Market price in M1 $39.32 $20.00 

Market price in M2 $48.58 $20.00 

Market price in M3 $57.83 $20.00 

Market price in M4 $67.09 $20.00 

Beta 1.264 0.000 

Market price in 0 46.85 18.52 

Capitalization weight 79.14% 20.86% 

Expected rate of return 13.58% 8.00% 

St. dev. of rate of return 22.10% 0.00% 

Market expected return 12.41% 

Market standard deviation 17.49% 

 

The CAPM requires us to specify the amounts of outstanding shares and the expected rate of 

return of the market portfolio in each state. We have assumed here that there are a total of 

15,000,000 shares of security 1 and 10,000,000 shares of security 2. In each state, the expected 

rate of return of the market portfolio is determined so that the market price of risk – the excess 

rate of return of the market portfolio divided by the standard deviation of the market – 

remains constant at 0.252. This is a reasonable way of selecting the expected rate of return of 

the market, because hereby it is, in each state, proportional to the standard deviation of the 

market (see Tables 5 and 6). Also, this implies that security 2 is priced at $20 in each time-1 

market state, which is desirable, because the time-2 prices for security 2 are independent of the 

time-1 market state (Figure 3). The risk-free interest rate is 8%. 
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Table 7 presents the investments required to start projects A, B, C and D. The investments are 

made in two rounds; the first financing round takes place at time 0 and the second at time 1. If 

the investment is made in both rounds, the project produces a cash flow at time 3. Figure 3 

gives this cash flow as a function of the time-2 state. The specific characteristics of these cash 

flows are summarized in Table 7. The cash flows of project A depend only on the private states, 

implying that the project is uncorrelated with the market. On the other hand, the cash flows of 

project B can be separated into private and market related components; the private component 

depends on the private state and the market component on the market state. Furthermore, the 

markets are partially complete (see Smith and Nau 1995) with respect to project B in the sense 

that the market component of project B can be replicated by buying 5 shares of security 1; the 

private component is obtained by taking the negative of project A. Similarly, the outcome of 

project C depends on both private and market states but it cannot be separated into market 

and private components. In contrast, the cash flows of project D are entirely market-dependent 

and they can be replicated by purchasing 5 shares of security 2. 

 

Table 7. Projects. 

 Project 

 A B C D 

Private state dependence Yes Yes Yes No 

Market state dependence No Yes Yes Yes 

Market component replication No Yes No Yes 

Investment cost at time 0 $10 $20 $30 $40 

Investment cost at time 1 $60 $150 $70 $40 

Expected outcome $80.00 $220.00 $127.42 $120.00 

St. dev. of outcome $43.01 $90.00 $62.66 $60.00 

 

We examine two preference models, (i) the risk-constrained mean-variance (MV) model, with 

which we use the deviation-based mean-risk model in Table 2, and (ii) the expected utility 

(EU) model with constant absolute risk aversion (CARA). As the base case, the latter model 

employs the preference functional [ ] [ ]( ) XU X E u X E e α−= = − ⎡ ⎤⎣ ⎦  with 0.003α =  unless 

otherwise noted, and the former the risk tolerance of $250 for the standard deviation of the 

terminal wealth level. For both preference models, breakeven selling and buying prices are equal 

(see Gustafsson et al. 2004, Gustafsson and Salo 2004) and therefore they are displayed in a 
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single entry. We begin our experiments by analyzing project values when securities are not 

available and then continue to the setting with securities. The optimizations were carried out 

using the GAMS software package with SBB and CONOPT algorithms (www.gams.com). 

7.2 Single Project without Securities 

We first solve project values in a setting where the investor can invest only in a single project 

and the risk-free asset. Under both preference models, each of the projects is started at time 0. 

The optimal management strategies for the projects at time 1 are described in the first eight 

data rows of Table 8. The mark “X” indicates that a further investment is made in the project, 

while the mark “–“ means that the project is terminated. The first mark is the optimal strategy 

for the MV model; the second one indicates the optimal action for the EU investor. In the MV 

model, the risk constraint is not binding, wherefore it now corresponds to expected value 

maximization. 

 

Table 8. Optimal project management strategies and project values. 

 Project 

Time-1 State A B C D 

M1/P1 X/X –/– X/X X/X 

M2/P1 X/X X/X X/X X/X 

M3/P1 X/X X/X X/X X/X 

M4/P1 X/X X/X X/X X/X 

M1/P2 –/– X/– X/X X/X 

M2/P2 –/– X/X X/X X/X 

M3/P2 –/– X/X X/X X/X 

M4/P2 –/– X/X X/X X/X 

Project value, MV/EV model $5.09 $33.69 $14.43 $25.84 

Project value, EU model $3.17 $25.59 $9.58 $21.24 

 

In Table 8, observe that a further investment is made in project A only if private state P1 

obtains. This is because the outcomes of project A in the states ensuing P1 are substantially 

higher than in the states following P2 (Figure 3). Project B is terminated in state M1/P1 under 

both preference models. In contrast, only the MV investor chooses to continue the project in 

state M1/P2. The termination decisions are explained by the low outcome with the market 

component of project B (i.e., security 1); furthermore, project B is more profitable in private 

state P2 than in P1, explaining the continuation decision with the (risk-neutral) MV investor. 
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Both MV and EU investors choose to continue projects C and D in all states. With project D 

this is because the realized time-1 state does not convey any information about the future cash 

flows of project D (Figure 3); with project C the future outcome distribution in each time-1 

state is different but in each case it warrants a continuation decision. 

 

Since we analyze here only a single project with the risk-free asset, we can use the project 

values in Table 8 to numerically verify Proposition 3. Let us take project A, for example. The 

certainty equivalent for an EU investor’s terminal wealth level with project A is $586.90, while 

it is $583.20 without the project. Discounting the difference of these values back to its present 

value yields 2($586.90 $583.20)/1.08 $3.17Av = − = , which coincides with the project’s 

breakeven selling and buying prices given in Table 8. 

7.3 Single Project with Securities 

We next consider a setting where the investor can invest in a single project, in the risk-free 

asset, and in securities 1 and 2. We first examine the investor’s trading strategy in a case where 

the investor cannot invest in projects, because we can consequently examine how the starting of 

a project influences the optimal trading strategy. Table 9 gives the optimal trading strategy for 

the MV investor. Note that purchase of security 2 at time 0 is equivalent to investment in the 

risk-free asset; for the sake of clarity, we have assumed here that the investor invests in the 

risk-free asset and not in security 2. The column CS gives the amount of money lent in each 

state. 

Table 9. Optimal trading strategy for the MV investor without projects. 

Portfolio weights Securities bought 

State 1 2 1 2 CS 

0 100% 0% 16.557 0 -$275.602 

M1/P1 74.7% 25.3% 14.203 9.468 -$394.475 

M2/P1 78.5% 21.5% 11.809 7.872 -$224.445 

M3/P1 81.3% 18.7% 9.414 6.275 -$10.034 

M4/P1 83.4% 16.6% 7.019 4.679 $248.724 

M1/P2 74.7% 25.3% 14.203 9.468 -$394.475 

M2/P2 78.5% 21.5% 11.809 7.872 -$224.445 

M3/P2 81.3% 18.7% 9.414 6.275 -$10.034 

M4/P2 83.4% 16.6% 7.019 4.679 $248.724 
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In comparison, an EU investor would buy 7.634 shares of security 1 at time 0, and 5.169 shares 

of security 1 and 3.478 shares of security 2 in each time-1 state. Since the price of security 1 

changes between the time-1 states, the portfolio weights for an EU investor do not remain 

constant across time-1 states. An EU investor lends $142.032 in state 0, implying that the EU 

model with 0.003α =  is a more risk averse preference model than the mean-standard 

deviation model with R = $250. 

 

When an MV investor invests in project A, the portfolio weights of the optimal security 

portfolio remain the same as in Table 9, but absolute amounts of securities in the portfolio 

change. The constant portfolio weights are explained by the fact that project A is uncorrelated 

with the market; this was proven in a two-period setting by Gustafsson et al. (2004). For the 

same reason, an EU investor preserves her investment behavior: even when she invests in 

project A, the optimal trading strategy is, as before, to buy 5.169 shares of security 1 and 3.478 

shares of security 2 in each time-1 state. 

 

Recall that the cash flows of project B can be formed by buying 5 shares of security 1 and 

deducting the cash flows of project A from the resulting portfolio. The weights of the optimal 

security portfolio for an MV investor now change, because project B counts for 5 shares of 

security 1; if these 5 shares were added to the security portfolio, the portfolio weights would 

match with the weights in Table 9. With the EU investor, we clearly observe this behavior: she 

invests in 0.169 shares of security 1 in each time-1 state where the project is continued (see 

Table 10) and 5.169 shares otherwise. 

 

In contrast, the cash flows of project C cannot be separated into private and market 

components, wherefore the weights of the security portfolio change without a clear pattern. 

Project D can be replicated using 5 shares of security 2. Therefore, in the optimum, an EU 

investor shorts 5 3.478 1.522− =  shares of security 2 and buys 5.169 shares of security 1. 

When these 5 shares are added to the security portfolio of the MV investor, the weights of the 

portfolio correspond to the ones in Table 9. 

 

Table 10 presents the optimal project management strategy and the values of the projects for 

MV and EU investors. The optimal strategies for project A, C and D are the same as in Table 

8, whereas project B is now terminated in states M2/P1 and M1/P2 under both preference 

models due to opportunity costs imposed by the securities, i.e. it is more profitable to invest in 
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the securities in states M2/P1 and M1/P2 than in project B. In particular, this implies that the 

opportunity costs imposed by securities can have a major effect on projects’ optimal 

management strategies. 

 

Table 10. Optimal project management strategies and project values. 

 Project 

 A B C D 

M1/P1 X/X –/– X/X X/X 

M2/P1 X/X –/– X/X X/X 

M3/P1 X/X X/X X/X X/X 

M4/P1 X/X X/X X/X X/X 

M1/P2 –/– –/– X/X X/X 

M2/P2 –/– X/X X/X X/X 

M3/P2 –/– X/X X/X X/X 

M4/P2 –/– X/X X/X X/X 

Project value, MV model $4.13 $14.53 $8.54 $15.56 

Project value, EU model $3.17 $14.15 $7.07 $15.56 

 

In each case, except for project A under the EU model, the opportunity costs lower the 

resulting project values. Notice also that project D is priced at $15.56 due to the existence of a 

replicating portfolio: the price of 5 shares of security 2 minus the risk-free discounted NPV of 

the costs is 5 $20/1.08 $40 $40/1.08 $15.56⋅ − − = . 

 

In summary, securities typically lead to lower project values by imposing additional 

opportunity costs.  However, as noted by Gustafsson et al. (2004), they may also increase 

project values by providing more efficient diversification possibilities. Furthermore, if a 

replicating portfolio exists for a project, the project will be priced at its CCA value. Also, the 

introduction of securities may, at times, change the optimal management strategies for projects. 

[Q1] 

7.4 Project Portfolio with Securities 

In this section, we consider the case where the investor can simultaneously invest in projects A–

D as well as in the risk-free asset and in the two securities. Here, the optimal project 

management strategies are the same as in Table 10, except that both MV and EU investors 
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make here a further investment in project B in states M2/P1; this is largely due to the fact 

that projects A and B are negatively correlated with each other. Note also that, apart from 

project D, the values of the projects increase, because with more investment assets available, 

the risks of each project can be diversified more efficiently than previously. 

 

Table 11 presents the optimal security portfolio of the MV investor when the projects are 

managed using the optimal project management strategy. This portfolio combines the effects 

that were described in the previous section: in states where project B is continued (in all states 

except M1/P1 and M1/P2), the investor buys five shares of security 1 less than she would 

otherwise; on the other hand, the starting of project D implies that the investor buys five 

shares of security 2 less in each state. With these modifications, the optimal trading strategy is 

very close to the optimal trading strategy when only project C was started. The small 

differences are due to correlations between projects. 

Table 11. Optimal trading strategy for the MV investor with projects A–D. 

Portfolio weights Securities bought 

State 1 2 1 2 CS 

0 100.0% 0.0% 11.136 0.000 -$121.69 

M1/P1 74.7% 25.3% 9.495 6.319 -$363.27 

M2/P1 76.2% 23.8% 5.167 3.912 -$239.70 

M3/P1 105.3% -5.3% 4.731 -0.685 -$67.29 

M4/P1 116.5% -16.6% 4.019 -1.915 $64.41 

M1/P2 95.1% 4.9% 17.451 1.769 -$525.09 

M2/P2 77.3% 22.7% 4.180 2.989 -$113.30 

M3/P2 94.5% 5.5% 2.046 0.343 $127.43 

M4/P2 114.8% -14.8% 2.488 -1.076 $210.33 

 

Tables 12 and 13 present sensitivity analyses for project values with respect to the MV 

investor’s risk tolerance R and the EU investor’s risk aversion parameter α , respectively. At 

low risk tolerance levels (high degree of risk aversion), an MV investor gives high values for 

projects A and B, whereas the values of the projects decrease as the investor becomes more risk 

tolerant. In contrast, the price behavior of project C is opposite: project C obtains low values at 

small risk tolerance levels and the values increase as the investor becomes more risk tolerant. 

Project D is constantly priced at $15.56 due to the existence of a replicating portfolio. An EU 

investor prices the projects similarly: values of projects A and B decrease by diminishing risk 
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aversion, while the value of project C increases. Also in this case, the value of project D is 

constant due to the existence of a replicating portfolio. 

 

In both cases, project values converge to limit values as the investor becomes less risk averse. 

However, these limit values are different, and in neither case they coincide with a risk neutral 

investor’s project values ( $4.13,  $9.35,  $1.86,  $12.83)− , obtained by using a short rate 

13.58% in period 0 (the expected rate of return of security 1; Table 6) and 20.00% in period 1 

(the expected rate of return of security 2; Table 5). Gustafsson et al. (2004) showed in their 

numerical experiments that, in a two-period setting, the project values for an MV investor 

converge towards the CAPM prices of the projects; the experiments in De Reyck et al. (2004) 

showed a similar behavior for EU investors with CARA. The observed converge behavior for 

both types of investors shows that a similar phenomenon can happen also in a multi-period 

setting. 

 

Table 12. Project values for an MV investor. 

Risk level A B C D

75 $11.70 $16.87 $4.12 $15.56

100 $8.49 $16.21 $6.20 $15.56

125 $7.55 $15.96 $7.20 $15.56

150 $7.05 $15.82 $7.80 $15.56

175 $6.73 $15.73 $8.21 $15.56

200 $6.50 $15.67 $8.51 $15.56

225 $6.34 $15.62 $8.74 $15.56

250 $6.21 $15.58 $8.92 $15.56

300 $6.02 $15.53 $9.19 $15.56

350 $5.89 $15.49 $9.38 $15.56

400 $5.79 $15.46 $9.52 $15.56

450 $5.71 $15.44 $9.63 $15.56

500 $5.65 $15.42 $9.71 $15.56

1000 $5.38 $15.35 $10.10 $15.56

1500 $5.28 $15.32 $10.23 $15.56

2500 $5.21 $15.30 $10.33 $15.56

5000 $5.15 $15.28 $10.41 $15.56

50000 $5.10 $15.27 $10.48 $15.56

Project
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Table 13. Project values for an EU investor. 

α A B C D

0.005 $8.03 $16.67 $5.97 $15.56

0.004 $7.43 $16.41 $6.87 $15.56

0.003 $6.83 $16.15 $7.79 $15.56

0.002 $6.24 $15.90 $8.74 $15.56

0.001 $5.67 $15.66 $9.71 $15.56

0.0001 $5.15 $15.46 $10.59 $15.56

0.00001 $5.10 $15.44 $10.68 $15.56

0.000001 $5.09 $15.44 $10.69 $15.56

Project

 
 

In summary, project values when the investor can invest simultaneously in projects A–D can be 

different from the values obtained with single projects due to correlations between projects and 

better diversification possibilities implied by a greater number of investment assets in the 

portfolio. Also, the optimal management strategies for the projects may change. [Q2] Sensitivity 

analysis reveals that the value of a project may either decrease or increase with increasing risk 

aversion depending on its correlation with the rest of the investment portfolio. Furthermore, a 

project with a replicating portfolio is constantly priced at its CCA value. Also, with decreasing 

level of risk-aversion, project values converge towards prices that are different from the 

projects’ risk-neutral values. These values are analogous to the CAPM prices and EU 

convergence prices observed in a two-period setting. [Q3] 

8 Summary and Conclusions 
In this paper, we have presented a model for selecting a multi-period mixed asset portfolio and 

a framework that uses this model in the valuation of multi-period projects. In the MAPS model, 

project management decisions are structured as project-specific decision trees. The project 

valuation framework is based on the concepts of breakeven selling and buying prices 

(Gustafsson et al. 2004, Luenberger 1998, Smith and Nau 1995); the breakeven selling price is 

the lowest price at which a rational investor would sell the project if she had it, whereas the 

breakeven buying price is the highest price at which the investor would buy the project if she 

did not have it. 

 

The present project valuation framework differs from Smith and Nau’s (1995) “full decision tree 

analysis” in that (i) it maximizes the investor’s terminal wealth level rather than the 
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intertemporal utility implied by the project and in that (ii) it takes into account the 

opportunity costs imposed by alternative projects in the portfolio. The framework also (iii) 

allows the use of a wide range of preference models, and it leads to an explicit optimization 

problem, which can readily be solved using standard techniques of nonlinear programming. In 

comparison with Smith and Nau’s (1995) integrated rollback procedure, which is also an 

explicit project valuation method, the present framework relies on fewer assumptions about the 

investor’s preference structure and the nature of project cash flows. 

 

In addition to formulating the project valuation framework, we showed in this paper that, when 

the investor uses either a preference functional or a mean-risk model, the framework gives 

consistent values with CCA, wherefore it can be regarded as a generalization of CCA to 

incomplete markets. In addition, we showed that the framework leads to Hillier’s (1963) 

method when the investor can invest only in a single project and in the risk-free asset, and 

when she exhibits both constant relative and constant absolute risk aversion. 

 

In our numerical experiments, we examined the pricing behavior of mean-variance and expected 

utility maximizers when markets were assumed to abide by the standard CAPM. We observed 

that many of the phenomena occurring in a two-period setting also took place in the multi-

period setting. For example, we observed that, when compared to the situation without 

securities, the presence of securities typically resulted in lower project values due to imposed 

opportunity costs. Furthermore, replicating portfolios led to project values that were 

independent of the investor’s risk attitude. We also observed that the value of a project, when 

it did not have a replicating portfolio, could either increase or decrease with increasing risk 

aversion, depending on its correlation with the rest of the investment portfolio. When the 

investor became less risk averse, project values converged towards prices that were different 

from the prices that a risk-neutral investor would give to the projects. 

 

This work suggests several areas for further research. For example, it would be relevant to 

examine the effect of alternative security pricing models, such as the multi-period models of 

Merton (1973), Stapleton and Subrahmanyam (1978), and Levy and Samuelson (1992), on 

project values and optimal trading strategies. Also, the convergence behavior of project values 

demands more analysis: the results from Gustafsson et al. (2004) indicate that in a two-period 

setting project values for a mean-variance investor converge towards the projects’ CAPM prices 

as the investor becomes less risk averse; a similar behavior could potentially be proven in the 
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multi-period case. 
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Appendix 

Proofs of Propositions 1, 2, 3 and 5 
Proof of Proposition 1: Let ω

*x  denote the portfolio of securities in state ω  that replicates the cash 

flow pattern of the next period. Let ,
0

( ) ( )
n

j i i
i

P S xωω ω ∗

=

= ∑  be the price of this replicating portfolio. 

Let  ω
**x  be the portfolio whose cash flow is equal to the value of the replicating portfolio in each 

state of the next period. (For convenience, let us assume that ω =**x 0  if ω  belongs to the last or 

the second last period and that ω =*x 0  if ω  belongs to the last period.) Then, * *
ω ω ω= +** * *x x x  is 

the portfolio that replicates the cash flows of the next period and which can be used to construct 

replicating portfolios for the period after the next period. Let us then define **
ω
**x  so that it is 

equal to *
ω
**x  if ω  belongs to the last or the second last period, and in other periods it is the 

portfolio whose cash flow is equal to the value of the replicating portfolio **
ω′
**x  in each state ω′  of 

the next period. If there is a replicating trading strategy for the project, there exists portfolios 
**

ω
**x  for all states ω . Thus, the time-0 portfolio 

0

**
ω
**x  can be used to construct a replicating 

strategy for the project. Its price is 
00 ,

0

( )
n

i i
i

S xωω ∗∗∗∗

=
∑ . Since a shorted replicating trading strategy, 

which can be created using portfolio 
0

**
ω− **x , nullifies the cash flows of the project, the setting 

where the investor invests in the project and shorts 
0

**
ω
**x  is identical with the situation where the 

investor cannot invest in the project and receives money equal to 
0

0
0 ,

0

( )
n

j i i
i

C S xωω ∗∗∗∗

=

− + ∑ , where 0
jC  

is the investment cost of the project. When the time-0 budget in the setting without the project is 

( )0b ω , the respective budget is ( )
0

0
0 0 ,

0

( )
n

j i i
i

b C S xωω ω ∗∗∗∗

=

− + ∑  with the project and portfolio 
0

**
ω− **x . 

Hence, the breakeven buying price of the project is given by 

0

0
0 0 , 0

0

( ) ( ) ( )
n

b
j i i j

i

b C S x v bωω ω ω∗∗∗∗

=

− + − =∑ , or 
0

0
0 ,

0

( )
n

b
j j i i

i

v C S xωω ∗∗∗∗

=

= − + ∑ , which is also the CCA 

price of the project. Conversely, in the setting with the project and budget ( )0b ω , we can nullify 

the project cash flows by shorting 
0

**
ω
**x  and obtain an effective budget of 
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( )
0

0
0 0 ,

0

( )
n

j i i
i

b C S xωω ω ∗∗∗∗

=

− + ∑ . Hence, in the setting without the project, we will obtain an equally 

desirable portfolio by increasing the budget by 
0

0
0 ,

0

( )
n

s
j j i i

i

v C S xωω ∗∗∗∗

=

= − + ∑ , which is both the 

breakeven selling price and the CCA price of the project. Q.E.D. 

 

Proof of Proposition 2: Since the investor can invest only in a single project and in the risk-free 

asset, in the setting without the project the investor invests her entire budget in the risk-free asset; 

consequently, the portfolio is riskless and is its own certainty equivalent, i.e. 

0(1 ) ( )T
TV s b Oω− = + + , sT is the time-T spot rate and O is the future value of the budgets at 

states other than 0ω . Also, changing the time-0 budget to 0( )b ω δ+  will give a portfolio value of 

( )0(1 ) ( )T
TV s b Oω δ∗ = + + +  without the project. Setting V V+ ∗=  we obtain 

(1 )TTV V s δ+ −= + + , wherefrom it follows 
(1 )TT

V V
s

δ
+ −−

=
+

, which is also, by definition, the 

breakeven selling price of the project. For a mean-risk investor, the proposition follows from the 

observation that, when the risk-constraint is not binding, the preference model corresponds to a 

preference functional model with CE[X] = E[X]. If the risk constraint prevents the starting of the 

project, then 0(1 ) ( )T
TV V s b Oω+ −= = + + , implying a zero value for the project. Q.E.D. 

 

Proof of Proposition 3: When the investor can invest only in a single project and in the risk-free 

asset, we have 0(1 ) ( )T
TV s b Oω− = + + , where sT is the time-T spot rate and O is the future value 

of the budgets at states other than 0ω . Also, we can separate the optimal terminal wealth level 

with the project to random variable X, which equals to project’s future value (project’s cash flows 

with the accrued interest), and to f that is the future value of the budgets. Since 

[ ] [ ]CE X f CE X f+ = + , and denoting CE[X] by CET , we have TV CE f+ = +  and V f− = . 

Increasing the budget by δ  both with and without the project will now increase the respective 

certainty equivalent by (1 )TTs δ+ . Let V ∗  be the certainty equivalent of the optimal portfolio 

when the investor invests in the project and the time-0 budget is 0( )b ω δ− . Then, 

(1 )TTV V s δ∗ += − + . Setting V V− ∗= , we have (1 )TTV V s δ− += − + , and hence we have 

(1 )TT

V V
s

δ
+ −−

=
+

, which is also the breakeven buying price of the project. Noticing that 

TV V CE+ −− = , we immediately obtain the desired formula. Using further this observation and 

Proposition 2, the proposition is also proved for the breakeven selling price. For a mean-risk 

investor, the proposition follows from the observation that, when the risk-constraint is not binding, 

the preference model corresponds to a preference functional model with CE[X] = E[X]. If the risk 

constraint prevents the starting of the project, the project will have a zero value. Q.E.D. 
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Proof of Proposition 5: The proposition is proven with a three-period counterexample. Consider an 

investor with an intertemporal utility function 1 2 31 0.95 0.9
0 1 2( , , ) 5 c c cu c c c e e e∗ − − −= − − − , where we 

have assumed CARA and additive independence for the sake of analogy with Smith and Nau 

(1995). Note that the parameters of the utility function reflect the investor’s risk aversion and the 

investor’s subjective perception about the relative importance of the cash flows received at different 

periods, and hence they can be selected independently of the risk-free interest rate or available 

securities. Consider then a project that yields a cash flow stream (–1, 1.1, 0) with 50% and a cash 

flow stream ( 1,0,1.22)−  with 50%. There is also a riskless zero-coupon bond yielding the cash flow 

stream ( 1,0,1.21)−  for sure. The risk-free interest rate is 10%, the time-0 budget is 1, and no other 

securities are available. The terminal wealth level with the project is 1.21 with 50% and 1.22 with 

50%. The bond yields a terminal wealth level of 1.21 for sure. Note that the terminal wealth level 

implied by the project stochastically dominates the one implied by the bond. The expected 

intertemporal utility for the project is 0.939 and for the bond 0.945. Thus, the bond is preferred to 

the project even though the project’s terminal wealth level stochastically dominates that of the 

bond. Q.E.D. 
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